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Abstract—The concept of time perception is used to describe the
phenomenological experience of time. There is strong evidence
that dopaminergic neurons are involved in the timing mechanisms
responsible for time perception. The phasic activity of these
neurons resembles the behavior of the reward prediction error
in temporal-difference learning models. Therefore, these models
are used to replicate the neuronal behaviour of the dopamine
system and corresponding timing mechanisms. However, time
perception has also been shown to be shaped by time estimation
mechanisms from external stimuli. In this paper we propose
a framework that combines these two principles, in order to
provide temporal cognition abilities to intelligent systems such as
robots. A time estimator based on observed environmental stimuli
is combined with a reinforcement learning approach, using a fea-
ture representation called Microstimuli to replicate dopaminergic
behaviour. The elapsed time perceived by the robot is estimated
by modeling sensor measurements as Gaussian processes to
capture the second-order statistics of the natural environment.
The proposed framework is evaluated on a simulated robot that
performs a temporal discrimination task originally performed by
mice. The ability of the robot to replicate the timing mechanisms
of the mice is demonstrated by the fact that both exhibit the same
ability to classify the duration of intervals.

Index Terms—time perception, robotics, reinforcement learn-
ing, Gaussian processes, microstimuli

I. INTRODUCTION

Although fully understanding the brain is a task still in
its genesis, recent advances in robotics and machine learning
research have enabled the reproduction of neuroscientific the-
ories in silico [1]. In this work, we focus on the mechanisms
responsible for time perception, which is the ability to perceive
the passage of time and duration of events [2]. Several areas of
the human brain are responsible for temporal cognition, such
as the basal ganglia, the cerebellum, and the cerebral cortex
[3], [4]. It is also influenced by several context parameters,
such as the emotional state, the level of attention, and the
task difficulty [5], [6]. Furthermore, the ability to perceive
time based on context is not restricted to humans, having been
found in groups of animals such as fish, birds, dogs and mice
[7], [8]. Temporal perception is considered to be of utmost
importance in collaborative activities and social interactions.

On the other hand, cyber-physical agents, such as robots,
perform tasks based on state transitions that occur according
to linear clock ticks, and lack the ability to perceive time

in a context-dependent way [9]. The general problem we are
interested in this paper is:

How can biologically-inspired mechanisms of time
perception be replicated in a cyber-physical system?

This problem has been motivated in [10], where the authors
stress the urge to incorporate temporal cognition as an intrinsic
part of robots’ decision-making process. In [11], it is stated
that the equipment of artificial agents with human-like time
perception capacities remains largely unexplored and is a
prerequisite for bringing robotic cognition closer to human
intelligence. It would give robots the ability to experience
the flow of time, perceive synchronization and understand
duration, thus improving their ability to make plans, recall
experiences and communicate. This problem has a vast number
of applications. For example, for the area of speech, having a
perception of time would enable robots to learn to adapt their
pauses in conversations to the situation and persons involved.

Our paper introduces a novel framework to enable artificial
intelligent systems to estimate and use the passage of time in
a biologically-inspired and, therefore, context-dependent way.
This is achieved by emulating the time perception mechanisms
of the brain algorithmically and using them in combination
with the agent’s decision-making algorithms. Many different
models have attempted to explain how time is perceived in
the brain. In this work, we consider that time stems from
two different sources explained next: external (environmental)
stimuli and internal neuronal processes [12].

The former, which we denote External Timing (ET), con-
cerns how external stimuli influence the perception of time,
such as why time intervals are overestimated when a movie
is seen in twice the natural speed [13]. To replicate the
timing mechanisms involved in this process, we model the
data collected from the robot’s sensors as Gaussian processes
and estimate time intervals from it. This not only validates
the idea that external stimuli influence the perception of time,
but also the possibility of providing context-dependent timing
mechanisms to non-biological agents.

The latter source of time perception, which we denote
Internal Timing (IT), is related to how internal biological
mechanisms might affect, or enable, the perception of time. It
is believed that time is encoded in the spiking activity (firing
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rate) of neurons, namely dopaminergic neurons, where this
activity changes when a task is performed at different speeds
[3]. To replicate these timing mechanisms, we thus replicate
dopaminergic behaviour principles in an agent.

By combining the two sources of timing mechanisms, ET
and IT, we capacitate robots with their own time perception
mechanism, that can be used to perform tasks that require
temporal cognition. A biologically-inspired decision-making
algorithm is obtained by combining them in a reinforcement
learning framework. In summary, the main contributions of
this paper are as follows:
• Estimation of the elapsed time from environmental sensor

data collected by a robot, using a Gaussian process based
estimator;

• Capacitate the agent with the ability to perform time-
aware actions, using the time estimated from external
stimuli and a reinforcement learning framework that
replicates internal neuronal timing mechanisms;

• Validation of the proposed framework in numerical sim-
ulations, which qualitatively show similarities between
the ability of the robot and that of mice to estimate the
duration of intervals.

This paper is organized as follows. Section II presents the
framework and formulates the problem. Section III describes
the proposed method to estimate time from environmental
data (ET), and Section IV presents the reinforcement learning
decision-making framework (IT) based on the time estimate.
The complete framework is validated and evaluated in Section
V, and the main results are highlighted. Finally, in Section VI,
conclusions are taken and future extensions are outlined.

II. PROBLEM FORMULATION

In this section, we define the notation and introduce the two
components of the proposed framework: we first explain the
reinforcement learning setting considered, and then introduce
the component responsible for estimating time from the envi-
ronment. Finally, we formalize the problems studied through-
out the rest of the paper and describe the experimental setup.

A. Notation

All vectors are column vectors, unless transposed. At time
step t, the ith element of vector v is vt(i). Matrices are denoted
by capital letters, and p(·) denotes a probability density. We
define the elapsed time, τ , to be the time difference between
two events. It is also referred to as interval duration, and is
used in interval timing tasks.

B. Preliminaries

In this paper we consider a discrete episodic reinforcement
learning setting, modeled as a Markov Decision Process [14]
and represented in Figure 1. The environment is described by
a sequence of states st ∈ S, where S is the state-space and
t represents a time step. The agent can perform an action,
at ∈ A, in the environment at each time step, and, based on
the value of that action, it receives a reward rt. The value of
an action is measured by its contribution to maximizing the

at

Environment

st, rt

Agent

yt
Internal TimingExternal Timing

(ET) (IT)

τ̂

st+1, rt+1

Fig. 1. Framework used to replicate the biological estimation of time
as a combination of external environmental stimuli and internal neuronal
mechanisms as follows. ET) The agent computes an estimate of the elapsed
time τ̂ from environmental observations yt. IT) This estimate is employed
in a temporal-difference learning algorithm that replicates internal timing
mechanisms: based on the elapsed time estimate τ̂ and the state st of the
environment, the agent computes the Q-values (1) of each state-action pair,
performs a corresponding action at (2), and receives a reward rt.

expected sum of future rewards. Since we are interested in
the value of the actions performed by the agent, we consider
a reinforcement learning setup with action selection using Q-
values. For large state-action spaces, features can be used to
generalise the estimation of the value of a state-action pair to
similar pairs. This technique is called function approximation.
In this work, we compute the Q-values of state-action pairs,
Q(s, a) : S ×A → R using a linear weighted combination of
the features x(s, a):

Qt(s, a) = wTt xt(s, a) :=

D∑
j=1

wt(j)xt(j). (1)

The features are chosen as to replicate internal neuronal
mechanisms (IT), and will be defined in Section IV. The goal
of the agent is to learn the feature weights, wt ∈ RD, that
better reflect the importance of the features to the different
state-action pairs. Based on the Q-values obtained from (1),
the agent’s actions are chosen following an ε-greedy policy:

at =

{
argmax

a
Q(st, a), with probability 1− εt,

random action, with probability εt.
(2)

Here, εt is an exploration parameter that decays according to
εt = ρεt−1, with decay parameter ρ ∈ [0, 1].

To this standard reinforcement learning approach we add an
external timing (ET) component, as represented in Figure 1.
In this component the agent computes its own estimate of the
elapsed time, τ̂ , from data O = {yt(i)}Mi=1, that it collects
from the environment at each time instant t. The data is col-
lected by M sensors and, from each one, N observations are
uniformly taken at the time instances t1, . . . , tN , throughout
the interval [0, τ ]. The sensor data is represented as the N -
dimensional vector yt(i) = [yt1(i), . . . , ytN (i)]

T , and τ ∈ R+

is the elapsed time. The estimated elapsed time is then used
as a parameter of the RL algorithm.

C. Problem formulation and experimental setup

To replicate biologically-inspired time perception mecha-
nisms in a robot, we create a twofold approach that combines
internal and external timing mechanisms.
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A temporal discrimination episodic task is used to evaluate
the proposed framework. It consists of an agent navigating
around the environment and collecting data, O, from its
sensors. During each episode, the agent receives two stimuli
separated by a certain time interval. Its task is to estimate
the duration of the interval. We formulate the ET problem of
estimating elapsed time from sensor data as:

Problem 1 (Timing from external stimuli). A set of observa-
tions, O, is collected during a certain interval of length τ .
Given these observations, estimate the interval duration; that
is, estimate τ given O.

A solution to Problem 1 is presented in Section III.
The next step consists of reproducing internal neuronal tim-

ing mechanisms that are influenced by the obtained estimate τ̂
of the time perceived from external stimuli. This originates the
complete decision-making framework for the agent to perform
actions based on both external and internal timing (ET and IT)
mechanisms, illustrated in Figure 1. How the estimate of the
interval length can be used to perform interval timing tasks
leads us to the second problem:

Problem 2 (Timing from internal and external mechanisms).
How can internal neuronal mechanisms be replicated from the
behaviour of the dopamine system and combined with the time
estimate τ̂ obtained from the environment?

Problem 2 is addressed in Section IV.
By solving these two problems, we obtain a framework that

allows an agent to correctly perform an interval timing task
based on the two timing mechanisms present in the brain.
More specifically, we introduce the time perceived from exter-
nal stimuli in the agent’s decision-making process by using the
perceived interval length, τ̂ , to condition the features xt used
to compute the Q-values in (1). Since these features are also
chosen to reproduce the behaviour of the dopaminergic system
that is believed to regulate timing mechanisms, we establish
a framework for performing actions, at, that considers both
internal and external timing mechanisms.

III. ET: TIMING FROM EXTERNAL STIMULI

In this section, we present the method used in the ET
component to solve Problem 1 by computing the elapsed time
from environmental data. We start by presenting background
information and then our proposed solution.

A. Related work

In [12], the following Bayesian framework is used to
estimate the elapsed time τ given the data O:

p(τ |O) ∝ p(O|τ)p(τ). (3)

The peak of the posterior distribution p(τ |O) is the Maximum
a Posteriori (MAP) estimate and is considered to be the
estimate of elapsed time, due to being the most likely time
interval to have passed given the data. The observations O,
collected from the environment, provide therefore a sensor-
based estimate of the passage of time [15], [16]. They can be

obtained from multiple sources of sensor data, such as images
from a camera or time-series from a LIDAR.

The question is then how can this data be modelled? One
should take into account that environmental information does
not change completely randomly. It shows patterns of high
correlation in both space and time [17]. Further, to avoid
handling excessive amounts of data, the observations are
usually treated in a low-dimensional representation. As an
example, in [12] it was studied how external stimuli introduce
a bias on the perceived time, and considered the estimate of the
elapsed time as a probabilistic expectation of stimulus change
in the environment, that can be inferred from its second-order
statistical properties. These are characterized by the mean
µ and correlation between observations (such as points in a
natural time-varying image). The latter is represented by the
kernel K and expresses how much the process changes from
one time step to the next, corresponding to the rhythm of
change of the natural environment. It was also shown that
the power spectrum of the observations can be approximated
by that of the Ornstein-Uhlenbeck (OU) function, which is a
process of Brownian motion with friction [18]. If the statistical
properties remain constant in time, the process is stationary
and thus the observations are modelled as stationary Gaussian
processes with an OU kernel [19].

B. Replicating External Timing

In the ET component from Figure 1 we provide a sense of
the passage of time from environmental information to a cyber-
physical agent by adopting the method of [12] to approach
Problem 1: given observations O, compute the MAP estimate
of (3) to find the perceived elapsed time τ̂ .

Assumption 1 (Uniform prior). The prior distribution p(τ) is
considered to be uniformly distributed since we do not model
the brain’s a priori information about the elapsed time.1

Under uniform prior, the MAP in (3) coincides with the
maximum likelihood estimate [20], which means that the
estimate of the elapsed time is the maximum of p(O|τ).
This corresponds to the probability of having observed O =
{yt(i)}Mi=1 during the interval τ , and is modelled as a zero-
mean joint Gaussian distribution over the N observations of all
M independent sensors. Considering that t1 = 0 and tN = τ ,
this refers to y0(i), . . . , yτ (i), for i = 1, . . . ,M :

p(yt(i)|τ) = N (yt(i); 0,Kθ) =
e−

1
2yt(i)K

−1
θ yTt (i)√

det(2πKθ)
. (4)

This joint distribution has an unknown kernel function Kθ

parametrized by θ.
To solve Problem 1 we first extend the work by [12] with

a parameter estimation step to obtain the hyperparameters of
the model from data: use Bayesian model selection to find the
hyperparameters of the model (4), θ. For this, we maximize

1Instead, in Section IV, we focus on directly replicating the neural mech-
anisms that would generate this information.
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the logarithm of the likelihood in (4) with respect to θ, which
involves computing the respective derivatives:

∂

∂θj
log p(yt(i)|θ) = −

1

2
tr(φφT −K−1θ )

∂Kθ

∂θj
, (5)

where φ = K−1yt(i).

Assumption 2 (Model selection). Assume that, as justified in
Section III-A, the data comes from a Gaussian process with
Ornstein-Uhlenbeck covariance.

In this case, each element of the N ×N OU kernel Kθ(τ),
where τ is the difference between time indexes, is given by:

Kλ,σ(τ) = e−λ|τ | + σ2ψ(τ). (6)

Here, ψ(0) = 1 and ψ(τ) = 0 for τ 6= 0, and θ = [λ, σ] are
the hyperparameters of the model. Hence, Problem 1 is solved
by identifying the appropriate values for λ and σ, in such a
way that the properties of the Gaussian process approximate
the ones of the data, and with these maximize (4). The MAP
is the robot’s estimate of the elapsed time between the two
stimuli, τ̂ .

IV. IT: TIMING FROM INTERNAL NEURAL MECHANISMS

This section presents the algorithm used in the IT step from
Figure 1 to answer Problem 2. It applies results from neuro-
science to reinforement learning, resulting in a biologically-
inspired Temporal-Difference (TD) learning algorithm. As in
Section III, we start by presenting background information and
then the proposed method.

A. Related work

For long, dopamine neurons have been know to be involved
in action selection and reward prediction mechanisms [21].
Besides these, they are also believed to be responsible for
interval timing mechanisms, that is, to have the ability to
encode the passage of time [22]. This is due to their phasic
activity encoding a reward prediction error signal, which is a
biologically-inspired signal that reflects the difference between
the received and the expected reward on the basis of previous
learning. This signal is present in TD learning models, and
is referred to as TD error. These models were introduced
by [23] to account for the need of a learning system that
tries to predict the value of future events from the patterns of
stimuli and rewards. In TD learning algorithms with function
approximation, each state st, introduced in Section II-B, is
described by a set of D features, xt(1), . . . , xt(D), that encode
cognitive and sensory experiences (e.g., environmental stimuli)
of an animal at each time step t. The two most accepted
theories nowadays to represent stimuli, given the need of
consistency with what happens in the basal ganglia, are the
Complete Serial Compound [23], [24] and the Microstimuli
[25]. Since the former presents inconsistencies in representing
certain characteristics of the dopamine system, the latter is,
to the best of our knowledge, the most realistic one and is
therefore used to solve Problem 2 in the next section.

B. Replicating Internal Timing using TD learning

We now present the TD learning algorithm considered.
Recall that, at each time step, the agent performs the action
with the highest Q-value (see (2)), and that the Q-values
are computed as Q(st, at) =

∑D
j=1 wt(j)xt(j) (see (1)),

by multiplying the weights wt by features xt. Eligibility
traces, et, are an essential attribute of reward learning that,
when multiplied by the TD error δt, expand the influence of
the presence of a state through time [26]. This error is the
difference between the expected and received reward, rt, at
each time step. The update equations of these parameters are:

δt = rt + γmax
a

Q(st+1, a)−Q(st, at), (7)

wt+1(j) = wt(j) + αδtet(j), (8)
et+1(j) = γηet(j) + xt(j), (9)

where γ is the discount rate, α the learning rate, and η
the decay parameter that determines the plasticity window of
recent stimuli.

To replicate the behaviour of dopaminergic neurons, we use
the Microstimuli framework presented in Figure 2 of [25] to
represent the features xt. In the Microstimuli framework, both
cues and rewards deploy their own set of m microstimuli.
If there are ζ cues and rewards per episode, there are a
total of mζ = D microstimuli. Each feature xt(1), . . . , xt(D)
represents the level of each microstimulus at time t. This level
is computed from the product of the exponentially decaying
trace height ht,

ht = exp{−(1− ξ)t}, (10)

with decay parameter ξ, by Gaussian basis functions f with
center ν and width β,

f(h, ν, β) =
1√
2π

exp
{
− (h− ν)2

2β2

}
, (11)

according to:

xt(j) = htf

(
ht,

j

m
, β

)
, for j = 1, . . . , D. (12)

Knowing how much a microstimulus has decayed due to its
slowly decaying memory trace can be seen as a basis for the
elapsed time. The weights wt(1), ..., wt(D) from (8) that are
multiplied by the Microstimuli features from (12), represent
the strengths of the corticostriatal synapses and indicate how
important each one is for each state and action.

C. Time perception as a combination of internal and external
timing mechanisms

We design a robot that, following the TD learning frame-
work from Section IV-B, can use the environmental estimate
of elapsed time from Section III-B to correctly perform
a sequence of actions. Correctness entails similarity to the
actions performed by an agent with temporal cognition.

Following the setup from Section II-C, a set of microstimuli
features xt are deployed when the agent receives the first
stimulus, and another set is deployed τ̂ time steps after. This
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Actions

States

Start Wait ... Wait Wait Short/Long

Init Tone Interval ... Interval Tone

0 1 2 ... τ̂ + 1 τ̂ + 2

Reward
τ̂

Fig. 2. Desired state transition, obtained when the optimal action (on the top row) is chosen. After pressing the Start button, the state of the environment
changes to Tone and the number of Interval states between the next Tone state is uniformly sampled from the maximum interval length, which is a design
variable for each experiment. The agent estimates the number of time steps spent in the Interval state, τ̂ , and, after the second Tone state, chooses the action
Short or Long that corresponds to its estimate. If the correct action is chosen, a positive reward is given to the agent.

Algorithm 1 Temporal discrimination task
1: Initialize Q(s0, a0) = 0, for all s ∈ S , a ∈ A, and
w(1), . . . , w(D) randomly (e.g. w(j) ∈ [0, 1])

2: for each episode do
3: Initialize s0
4: for each time step t do
5: if first stimulus == 1 then
6: Update xt(1), . . . , xt(D) according to (12)
7: else if has received stimulus 1 but not 2 then
8: Collect data yt(1), . . . , yt(M)
9: else if second stimulus == 2 then

10: Estimate the elapsed time, τ̂ , by maximizing (4)
11: Update xτ̂ (1), . . . , xτ̂ (D), according to (12)
12: end if
13: Compute the Q-values according to (1) and choose

at according to (2). Take action at, observe rt, st+1

14: δt ← rt + γmaxaQ(st+1, a)−Q(st, at)
15: wt+1(j)← wt(j) + αδtet(j), for j = 1, . . . , D
16: et+1(j)← γηet(j) + xt(j), for j = 1, . . . , D
17: st ← st+1

18: end for
19: Until st is terminal
20: end for

means that the time step at which the second set of stimuli is
deployed depends on the agent’s estimate of elapsed time, τ̂ ,
computed in Section III. The features influence the Q-value of
the state-action pair according to (1), and therefore the action
at chosen by the agent. The complete framework from Figure
1 is summarized in Algorithm 1. Hence, by solving Problems
1 and 2 we replicate internal and external timing mechanisms.
In the next section, the framework is evaluated by analysing
the sequence of actions chosen by the agent in a temporal
discrimination task. If the actions are similar to those of an
animal, we claim that the agent attained temporal cognition.

V. NUMERICAL RESULTS

In this section, we evaluate the proposed framework de-
scribed in Section IV-C in an interval timing task, and compare
the behavior of an agent using Algorithm 1 with that of mice.

A. Background

In [3], a temporal discrimination episodic experiment was
performed with mice. There are three available buttons:

0 10 20

0

10

20

Interval duration, τ [s]

τ̂
[s

]

Fig. 3. Estimated τ̂ for each interval duration. The mean of the estimated
interval almost perfectly matches the ground truth (blue dots), while the
standard deviation (faded blue) increases linearly with the interval length.
Its linear regression is shown in black. This illustrates the scalar property, a
trend also exhibited by humans and animals.

“Start”, “Short” or “Long”. When the mouse presses the
former, two auditory tones are presented. These are separated
by a time interval that varies between episodes and that can
be classified as either short or long. Based on how much
time the animal estimates to have passed between both cues,
the animal presses the button corresponding to its estimated
interval (“Short” or “Long”). If the action is correct, the animal
is rewarded with water or food.

We replicate this experiment in a simulated robot. The state
of the environment is given by S ={Init, Tone, Interval},
and the action space of the agent by A ={Start, Wait, Short,
Long}. The schematic representation of an episode where the
optimal sequence of actions is performed is shown in Figure 2.
We define the interval duration of an episode, τ , to be its
number of “Interval” states. This number is a realization of
a discrete uniform random variable I ∼ unif{1, L}, where
L ∈ N is the maximum interval duration of the experiment.
The interval duration is classified as{

“Short”, if τ ∈ [1, 2, . . . , bL/2c],
“Long”, if τ ∈ [dL/2 + 1e, . . . , L],

if τ is even, and {L/2, L/2+1} is the classification boundary.
In the results presented next, we chose the maximum duration
to be L = 3 sec as in the real experiment, which corresponds to
L = 8 time steps. So “Short” := τ ∈ [1, 2, 3, 4]} and “Long”
:= τ ∈ [5, 6, 7, 8]}. The problem has increased complexity
since the agent cannot perform the RL problem by counting
the number of ‘Interval” states. It has to use the τ̂ obtained
from the data when solving Problem 1 from Section III.
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B. Results and discussion
In this section we present the main numerical results ob-

tained by our proposed solution to Problems 1 and 2.

Numerical result 1 (ET). The elapsed time is accurately
estimated from sensor data.

The observations yt(i) are considered to be the values of the
ith angle of the simulated robot’s LIDAR at time t, collected
while the robot does the “Wait” action between tones. From
(5) we estimated the maximum likelihood model parameters
λ and θ of the collected data and used these to estimate the
elapsed time τ . Figure 3 shows the estimated τ̂ for different
intervals, from which it can be concluded that our estimate is
accurate for this range of intervals. This shows that Problem 1
is therefore correctly solved. It can be concluded that the
average estimated duration is not affected by the length of the
interval to be estimated, but its standard deviation increases
approximately linearly with the interval length. This is called
the scalar property [27], and is one of the most important
properties of time perception. It represents consistency with
what happens in the brain, since the longer the interval, the
harder it is for humans and animals to estimate it [28].

Numerical result 2 (ET and IT). The actions of the agent in
the temporal discrimination task are similar to those of the
mice, showing a similar ability to classify interval durations.

We start by presenting two figures that provide insights
about the framework. Firstly, Figure 4 shows three completed
episodes with the same interval duration sampled at different
phases of the training. Since we chose episodes where τ = 2,
the second tone happens at t = 4 and the reward is given
after. It can be seen that as learning occurs, the TD error
from (7): i) increases at cue onset, ii) decreases at reward
delivery. This indicates that the model learns to predict the
reward from earlier stimuli, as explained in [21]. These results
match empirical data, and the second tone acts as a conditional
stimulus from classical conditioning.

Figure 5 shows the Q-values computed from (1), after
training, for two episodes with different interval durations. The
action with the highest Q-value at each time step is marked
with a dot and it is the one chosen if there is no exploration.
In both cases the resulting sequence of actions corresponds to
the optimal one presented in Figure 2, which means that the
agent learns how to correctly act based on its time estimate.

Results like the ones from Figures 4 and 5 can be a
premonition of the success of the framework for social inter-
actions. Rather than waiting a predetermined interval between
receiving a question and answering it, it can enable agents to
adjust this interval to the situation and people involved.

The next results are presented using seconds instead of
time steps to quantify the interval duration, for simplicity of
comparison with the original experiment. After the exploration
phase, the agent learns to perform the correct sequence of
actions until hearing the second tone. However, to receive
the reward it also needs to choose the button that correctly
classifies the interval duration of that episode. Figure 6 shows

0
0.5 Episode 15

0
0.5 Episode 250

T
D

er
ro

r,
δ t

0 1 2 3 4
0

0.5 Episode 400

Time steps, t

Fig. 4. Analysis of the TD error in different phases of learning. In the three
episodes chosen, τ = 2 time steps. As learning occurs, the agent starts
expecting a reward after its correct classification of the interval (t = 4).
Therefore, the TD error at the end of the episode decreases.

0 1 2 3

−1

0

1

τ̂ = 1

Q
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t
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t
)

Start Wait Short Long

0 1 2 3 4 5 6 7 8 9 10

−1

0

1
τ̂ = 8

Time steps, t

Q
(s
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Fig. 5. Evolution of the Q-values with the interval duration, after training. The
time step values correspond to the state numbers from Figure 2, and each line
to the Q-value of each action from the same figure. In the top figure, τ = 1
(short interval), and in the bottom one, τ = 8 time steps (long interval).

that the number of misclassified interval durations is higher
for those closer to the boundary between “Short” and “Long”
(around τ̂ = {1.5, 1.8}s – note that this is not the case of the
episodes in Figure 5). This happens regardless of the maximum
interval length, and is a trend also exhibited by humans and
animals [4]. Figure 7 shows the corresponding psychometric
curve, representing the empirical probability of the intervals
being classified as “Long”. The orange curve is a logistic
function fit to the average performance of a mouse during
10 experiments, from [3], and shows a qualitatively similar
behaviour to the one of our agent, in blue.

In summary, the similarity between the timing mechanisms
of the robot and mice is demonstrated by the following results:

• The elapsed time was successfully computed from envi-
ronmental data;

• Uncertainty in the estimation of the interval duration from
data increases with the length of the interval, exhibiting
the scalar property;

• The error of the TD model replicates the firing rate of
dopamine neurons, decreasing with reward expectancy;
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number of misclassifications is 327, being the average 1.65 s and the median
1.8 s. As is the case in humans and animals, the intervals in the boundary
between classes are the ones more commonly wrongly classified.
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Fig. 7. Psychometric curves corresponding to the empirical probability of an
interval being classified as Long. The psychometric curve of the RL agent
closely matches that of the mouse.

• Uncertainty in the classification of intervals is higher on
the boundary between classes;

• The psychometric curve of our agent closely matches the
one of mice.

VI. CONCLUSION

In this paper, we have proposed an algorithm for providing
temporal cognition to a robot. This algorithm combines two
timing sources: estimation mechanisms from external stimuli,
and internal neuronal mechanisms. To replicate the former, we
exploited results from Gaussian processes. For the latter, we
employed a temporal difference learning feature representation
called Microstimuli to replicate dopaminergic behaviour. In
numerical simulations, we showed that an agent using the
proposed algorithm is able to succeed in time-dependent tasks,
due to the ability to perceive the passage of time similar to
the one that humans and animals have.

In the future, the framework proposed shall be implemented
in a real robot. One direction for future work is to use deep
learning to analyse the non-parametric distribution of the en-
vironmental data instead of parametrized Gaussian processes.
Another direction involves studying how the framework be-
haves for other time scales and how it can be adapted, since
dopaminergic neurons are believed to only control temporal
judgments on a time scale of seconds.
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[4] T. Gouvêa, T. Monteiro, A. Motiwala, S. Soares, C. Machens, and
J. Paton, “Striatal dynamics explain duration judgments,” Elife, vol. 4,
2015.

[5] S. Droit-Volet and S. Gil, “The Time–Emotion paradox,” Philosophical
Transactions of the Royal Society B: Biological Sciences, vol. 364,
no. 1525, pp. 1943–1953, 2009.

[6] S. Droit-Volet and H. Meck, “How emotions colour our perception of
time,” Trends in Cognitive Sciences, vol. 11, no. 12, pp. 504–513, 2007.

[7] M. R. Drew, B. Zupan, A. Cooke, P. Couvillon, and P. D. Balsam,
“Temporal control of conditioned responding in goldfish.,” Journal of
Experimental Psychology: Animal Behavior Processes, vol. 31, no. 1,
p. 31, 2005.

[8] K. Healy, L. McNally, G. D. Ruxton, N. Cooper, and A. L. Jackson,
“Metabolic rate and body size are linked with perception of temporal
information,” Animal Behaviour, vol. 86, no. 4, pp. 685–696, 2013.

[9] M. Maniadakis, P. Trahanias, and J. Tani, “Explorations on artificial time
perception,” Neural Networks, vol. 22, no. 5-6, pp. 509–517, 2009.

[10] M. Maniadakis and P. Trahanias, “Temporal cognition: A key ingredient
of intelligent systems,” Frontiers in Neurorobotics, vol. 5, p. 2, 2011.

[11] M. Maniadakis and P. Trahanias, “Time in consciousness, memory and
human-robot interaction,” in International Conference on Simulation of
Adaptive Behavior, pp. 11–20, Springer, 2014.

[12] M. B. Ahrens and M. Sahani, “Observers exploit stochastic models of
sensory change to help judge the passage of time,” Current Biology,
vol. 21, no. 3, pp. 200–206, 2011.

[13] S. W. Brown, “Time, change, and motion: The effects of stimulus
movement on temporal perception,” Perception & psychophysics, vol. 57,
pp. 105–116, 1995.

[14] V. Krishnamurthy, Partially Observed Markov Decision Processes. Cam-
bridge University Press, 2016.

[15] D. Eagleman, “Time perception is distorted during slow motion se-
quences in movies,” Journal of Vision, vol. 4, no. 8, pp. 491–491, 2004.

[16] S. W. Brown, “Time, change, and motion: The effects of stimulus move-
ment on temporal perception,” Perception & Psychophysics, vol. 57,
pp. 105–116, 1995.

[17] D. W. Dong and J. J. Atick, “Statistics of natural time-varying images,”
Network: Comp. in Neural Systems, vol. 6, no. 3, pp. 345–358, 1995.

[18] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the Brownian
motion,” Physical Review, vol. 36, no. 5, p. 823, 1930.

[19] C. B. Do, “Gaussian processes,” Stanford University, Stanford, CA,
vol. 5, p. 2017, 2007.

[20] L. Ljung, System Identification: Theory for the User. Prentrice-Hall,
New Jersey, 1987.

[21] P. W. Glimcher, “Understanding dopamine and reinforcement learning:
The dopamine reward-prediction error hypothesis,” Proc. of the National
Academy of Sci., vol. 108, no. Supplement 3, pp. 15647–15654, 2011.

[22] S. J. Gershman, A. A. Moustafa, and E. A. Ludvig, “Time representation
in reinforcement learning models of the basal ganglia,” Frontiers in
Computational Neuroscience, vol. 7, p. 194, 2014.

[23] R. S. Sutton and A. G. Barto, “Time-derivative models of Pavlovian re-
inforcement,” Learning and Computational Neuroscience: Foundations
of adaptive networks, pp. 497–537, 1990.

[24] P. R. Montague, P. Dayan, and T. J. Sejnowski, “A framework for
mesencephalic dopamine systems based on predictive Hebbian learning,”
Journal of neuroscience, vol. 16, no. 5, pp. 1936–1947, 1996.

[25] E. A. Ludvig, R. S. Sutton, and E. J. Kehoe, “Stimulus representation
and the timing of reward-prediction errors in models of the dopamine
system,” Neural computation, vol. 20, no. 12, pp. 3034–3054, 2008.

[26] S. P. Singh and R. S. Sutton, “Reinforcement learning with replacing
eligibility traces,” Machine learning, vol. 22, no. 1-3, pp. 123–158, 1996.

[27] H. Lejeune and J. Wearden, “Scalar properties in animal timing: Con-
formity and violations,” Quarterly Journal of Experimental Psychology,
vol. 59, no. 11, pp. 1875–1908, 2006.

[28] M. Sucala, B. Scheckner, and D. David, “Psychological time: interval
length judgments and subjective passage of time judgments,” Current
psychology letters. Behaviour, brain & cognition, vol. 26, no. 2, 2011.

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on February 03,2021 at 19:28:55 UTC from IEEE Xplore.  Restrictions apply. 


